;"Reference";"Year";"Description";"PMID";"#Motifs in DB" ;"Rottensteiner H, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A. Saccharomyces cerevisiae Pip2p-Oaf1p regulates PEX25 transcription through an adenine-less ORE. Eur J Biochem. 2003 May;270(9):2013-22.";"2003";"immunoblotting of various genes";"12709061";"1" ;"Moqtaderi Z, Struhl K. Genome-wide occupancy profile of the RNA polymerase III machinery in Saccharomyces cerevisiae reveals loci with incomplete transcription complexes. Mol Cell Biol. 2004 May;24(10):4118-27.";"2004";"ChIP-chip";"15121834";"1" ;"Hellauer K, Akache B, MacPherson S, Sirard E, Turcotte B. Zinc cluster protein Rdr1p is a transcriptional repressor of the PDR5 gene encoding a multidrug transporter. J Biol Chem. 2002 May 17;277(20):17671-6. Epub 2002 Mar 6.";"2002";"Enrichment in Deletion-up regulated promoters";"11882665";"1" ;"Lieb JD, Liu X, Botstein D, Brown PO. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nat Genet. 2001 Aug;28(4):327-34.";"2001";"ChIP-chip";"11455386";"1" ;"Hikkel I, Lucau-Danila A, Delaveau T, Marc P, Devaux F, Jacq C. A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast. J Biol Chem. 2003 Mar 28;278(13):11427-32. Epub 2003 Jan 14.";"2003";"ChIP, microarray Enrichment";"12529331";"1" ;"Schüller C, Mamnun YM, Mollapour M, Krapf G, Schuster M, Bauer BE, Piper PW, Kuhler K. Global phenotypic analysis and transcriptional profiling defines the weak acid stress response regulon in Saccharomyces cerevisiae. Mol Biol Cell. 2004 Feb;15(2):706-20. Epub 2003 Nov 14.";"2003";"Microarray Enrichment";"14617816";"1" ;"Conlan RS, Tzamarias D. Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol. 2001 Jun 22;309(5):1007-15.";"2001";"EMSA, ChIP";"11399075";"1" ;"Tsuzi D, Maeta K, Takatsume Y, Izawa S, Inoue Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Lett. 2004 May 7;565(1-3):148-54.";"2004";"multiple site examination, mutational analysis";"15135069";"1" ;"Schroeder SC, Weil PA. Biochemical and genetic characterization of the dominant positive element driving transcription ofthe yeast TBP-encoding gene, SPT15. Nucleic Acids Res. 1998 Sep 15;26(18):4186-95.";"1998";"mutational analysis, EMSA, DMS footprinting, DEPC footprinting";"9722639";"1" ;"Le Crom S, Devaux F, Marc P, Zhang X, Moye-Rowley WS, Jacq C. New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system. Mol Cell Biol. 2002 Apr;22(8):2642-9.";"2002";"microArray Enrichment, EMSA";"11909958";"1" ;"Kren A, Mamnun YM, Bauer BE, Schüller C, Wolfger H, Hatzixanthis K, Mollapour M, Gregori C, Piper P, Kuchler K. War1p, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol. 2003 Mar;23(5):1775-85.";"2003";"single DNase protection, mobility shift";"12588995";"1" ;"Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M. Regulation of gene expression by a metabolic enzyme. Science. 2004 Oct 15;306(5695):482-4.";"2004";"EMSA, ChIP-chip";"15486299";"1" ;"Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I. Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res. 2011 May 17. [Epub ahead of print]";"2011";"EMSA, motif finding in co regulated genes";"21586585";"1" ;"Kent NA, Eibert SM, Mellor J. Cbf1p is required for chromatin remodeling at promoter-proximal CACGTG motifs in yeast. J Biol Chem. 2004 Jun 25;279(26):27116-23. Epub 2004 Apr 24.";"2004";"ChIP";"15111622";"1" ;"Rutherford JC, Jaron S, Winge DR. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements. J Biol Chem. 2003 Jul 25;278(30):27636-43. Epub 2003 May 19.";"2003";"microArray Enrichment";"12756250";"1" ;"Mori K, Ogawa N, Kawahara T, Yanagi H, Yura T. Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. J Biol Chem. 1998 Apr 17;273(16):9912-20.";"1998";"multiple site analysis, site-turns-on-gene";"9545334";"1" ;"Hagen DC, Bruhn L, Westby CA, Sprague GF Jr. Transcription of alpha-specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the coregulator alpha 1. Mol Cell Biol. 1993 Nov;13(11):6866-75.";"1993";"DNase/methyl protection, mutational analysis";"8413280";"1" ;"Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell. 2003 Jun;11(6):1609-20.";"2003";"EMSA, ChIP, single binding site";"12820973";"1" ;"Li D, Dong Y, Jiang Y, Jiang H, Cai J, Wang W. A de novo originated gene depresses budding yeast mating pathway and is repressed by the protein encoded by its antisense strand. Cell Res. 2010 Apr;20(4):408-20. Epub 2010 Mar 2.";"2010";"EMSA";"20195295";"1" ;"Wieland G, Hemmerich P, Koch M, Stoyan T, Hegemann J, Diekmann S. Determination of the binding constants of the centromere protein Cbf1 to all 16 centromere DNAs of Saccharomyces cerevisiae. Nucleic Acids Res. 2001 Mar 1;29(5):1054-60.";"2001";"EMSA, kinetic analysis";"11222754";"1" ;"Boorsma A, de Nobel H, ter Riet B, Bargmann B, Brul S, Hellingwerf KJ, Klis FM. Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast. 2004 Apr 15;21(5):413-27.";"2004";"microArray Enrichment";"15116342";"1" ;"Wysocki R, Fortier PK, Maciaszczyk E, Thorsen M, Leduc A, Odhagen A, Owsianik G, Ulaszewski S, Ramotar D, Tamás MJ. Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p. Mol Biol Cell. 2004 May;15(5):2049-60. Epub 2004 Feb 20.";"2004";"ChIP, expression enrichment";"14978214";"1" ;"Reardon BJ, Gordon D, Ballard MJ, Winter E. DNA binding properties of the Saccharomyces cerevisiae DAT1 gene product. Nucleic Acids Res. 1995 Dec 11;23(23):4900-6.";"1995";"EMSA";"8532535";"1" ;"Taylor IA, McIntosh PB, Pala P, Treiber MK, Howell S, Lane AN, Smerdon SJ. Characterization of the DNA-binding domains from the yeast cell-cycle transcription factors Mbp1 and Swi4. Biochemistry. 2000 Apr 11;39(14):3943-54.";"2000";"NMR";"10747782";"1" ;"Dobi A, Dameron CT, Hu S, Hamer D, Winge DR. Distinct regions of Cu(I).ACE1 contact two spatially resolved DNA major groove sites. J Biol Chem. 1995 Apr 28;270(17):10171-8.";"1995";"Methylation protection, EMSA";"7730320";"1" ;"Heise B, van der Felden J, Kern S, Malcher M, Brückner S, Mösch HU. The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryot Cell. 2010 Apr;9(4):514-31. Epub 2010 Jan 29.";"2010";"EMSA";"20118212";"1" ;"Nguyên DT, Alarco AM, Raymond M. Multiple Yap1p-binding sites mediate induction of the yeast major facilitator FLR1 gene in response to drugs, oxidants, and alkylating agents. J Biol Chem. 2001 Jan 12;276(2):1138-45.";"2001";"EMSA, site mutation";"11056165";"1" ;"Kolaczkowski M, Kolaczkowska A, Gaigg B, Schneiter R, Moye-Rowley WS. Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae. Eukaryot Cell. 2004 Aug;3(4):880-92.";"2004";"single DNase protection";"15302821";"1" ;"Lamb TM, Mitchell AP. The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol. 2003 Jan;23(2):677-86.";"2003";"microArray Enrichment, ChIP";"12509465";"1" ;"Newcomb LL, Hall DD, Heideman W. AZF1 is a glucose-dependent positive regulator of CLN3 transcription in Saccharomyces cerevisiae. Mol Cell Biol. 2002 Mar;22(5):1607-14.";"2002";"EMSA, ChIP, single binding site";"11839825";"1" ;"Weider M, Machnik A, Klebl F, Sauer N. Vhr1p, a new transcription factor from budding yeast, regulates biotin-dependent expression of VHT1 and BIO5. J Biol Chem. 2006 May 12;281(19):13513-24. Epub 2006 Mar 13.";"2006";"One-hybrid, tiling deletion of conserved site";"16533810";"1" ;"Nielsen PS, van den Hazel B, Didion T, de Boer M, Jørgensen M, Planta RJ, Kielland-Brandt MC, Andersen HA. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol Gen Genet. 2001 Jan;264(5):613-22.";"2001";"EMSA, site-turns-on-gene, one-hybrid, ";"11212916";"1" ;"Li S, Dean S, Li Z, Horecka J, Deschenes RJ, Fassler JS. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell. 2002 Feb;13(2):412-24.";"2002";"EMSA";"11854400";"1" ;"Barbaric S, Münsterkötter M, Goding C, Hörz W. Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol Cell Biol. 1998 May;18(5):2629-39.";"1998";"EMSA, DNase protection, DMS footprinting";"9566882";"1" ;"Ghosh S, Pugh BF. Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol. 2011 Jan;31(1):190-202. Epub 2010 Oct 18.";"2011";"ChIP-chip";"20956559";"1" ;"Kunoh T, Kaneko Y, Harashima S. YHP1 encodes a new homeoprotein that binds to the IME1 promoter in Saccharomyces cerevisiae. Yeast. 2000 Mar 30;16(5):439-49.";"2000";"EMSA, one-hybrid";"10705372";"1" ;"Akache B, Turcotte B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem. 2002 Jun 14;277(24):21254-60. Epub 2002 Apr 9.";"2002";"EMSA, single site mutagenesis";"11943786";"1" ;"Kim JH, Polish J, Johnston M. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol. 2003 Aug;23(15):5208-16.";"2003";"DNase protection, methylation protection, EMSA, ChIP";"12861007";"1" ;"Gertz J, Riles L, Turnbaugh P, Ho SW, Cohen BA. Discovery, validation, and genetic dissection of transcription factor binding sites by comparative and functional genomics. Genome Res. 2005 Aug;15(8):1145-52.";"2005";"Expression enrichment, Y1H, EMSA";"16077013";"1" ;"Sato T, Lopez MC, Sugioka S, Jigami Y, Baker HV, Uemura H. The E-box DNA binding protein Sgc1p suppresses the gcr2 mutation, which is involved in transcriptional activation of glycolytic genes in Saccharomyces cerevisiae. FEBS Lett. 1999 Dec 17;463(3):307-11.";"1999";"DNase footprinting";"10606743";"1" ;"Maxon ME, Herskowitz I. Ash1p is a site-specific DNA-binding protein that actively represses transcription. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1495-500.";"2001";"EMSA, DNase footprinting, single site mutagenesis";"11171979";"1" ;"Madison JM, Dudley AM, Winston F. Identification and analysis of Mot3, a zinc finger protein that binds to the retrotransposon Ty long terminal repeat (delta) in Saccharomyces cerevisiae. Mol Cell Biol. 1998 Apr;18(4):1879-90.";"1998";"EMSA, DNase protection";"9528759";"1" ;"Eriksson PR, Mendiratta G, McLaughlin NB, Wolfsberg TG, Mariño-Ramírez L, Pompa TA, Jainerin M, Landsman D, Shen CH, Clark DJ. Global regulation by the yeast Spt10 protein is mediated through chromatin structure and the histone upstream activating sequence elements. Mol Cell Biol. 2005 Oct;25(20):9127-37.";"2005";"ChIP, EMSA";"16199888";"1" ;"Jung US, Levin DE. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol. 1999 Dec;34(5):1049-57.";"1999";"related protein promoter analysis, mini-array";"10594829";"1" ;"Becker B, Feller A, el Alami M, Dubois E, Piérard A. A nonameric core sequence is required upstream of the LYS genes of Saccharomyces cerevisiae for Lys14p-mediated activation and apparent repression by lysine. Mol Microbiol. 1998 Jul;29(1):151-63.";"1998";"EMSA, mutational analysis, multiple site analysis";"9701810";"1" ;"Challice JM, Segall J. Transcription of the 5 S rRNA gene of Saccharomyces cerevisiae requires a promoter element at +1 and a 14-base pair internal control region. J Biol Chem. 1989 Nov 25;264(33):20060-7.";"1989";"Methylation protection, single site analysis";"2684967";"1" ;"Evans CF, Engelke DR, Thiele DJ. ACE1 transcription factor produced in Escherichia coli binds multiple regions within yeast metallothionein upstream activation sequences. Mol Cell Biol. 1990 Jan;10(1):426-9.";"1990";"Site-turns-gene-on, DNase protection";"2403647";"1" ;"Foti DM, Welihinda A, Kaufman RJ, Lee AS. Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J Biol Chem. 1999 Oct 22;274(43):30402-9.";"1999";"EMSA, DNase protection";"10521417";"1" ;"Graham IR, Chambers A. Use of a selection technique to identify the diversity of binding sites for the yeast RAP1 transcription factor. Nucleic Acids Res. 1994 Jan 25;22(2):124-30.";"1993";"SAAB";"8121795";"1" ;"Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 1999 Nov 15;18(22):6448-54.";"1999";"EMSA, site-turns-on-gene";"10562556";"1" ;"Grishin AV, Rothenberg M, Downs MA, Blumer KJ. Mot3, a Zn finger transcription factor that modulates gene expression and attenuates mating pheromone signaling in Saccharomyces cerevisiae. Genetics. 1998 Jun;149(2):879-92.";"1998";"EMSA, site-turns-on-gene";"9611199";"1" ;"Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H. Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett. 1999 Apr 30;450(1-2):27-34.";"1999";"one-hybrid, EMSA, ";"10350051";"1" ;"de Boer M, Nielsen PS, Bebelman JP, Heerikhuizen H, Andersen HA, Planta RJ. Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucleic Acids Res. 2000 Feb 15;28(4):974-81.";"2000";"EMSA, mutational analysis";"10648791";"1" ;"van Dyk D, Hansson G, Pretorius IS, Bauer FF. Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics. 2003 Nov;165(3):1045-58.";"2003";"multiple site examination, mutational analysis";"14668363";"1" ;"Proft M, Serrano R. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol. 1999 Jan;19(1):537-46.";"1999";"EMSA";"9858577";"1" ;"Mai B, Breeden L. Xbp1, a stress-induced transcriptional repressor of the Saccharomyces cerevisiae Swi4/Mbp1 family. Mol Cell Biol. 1997 Nov;17(11):6491-501.";"1997";"in vitro selection";"9343412";"1" ;"Park SH, Koh SS, Chun JH, Hwang HJ, Kang HS. Nrg1 is a transcriptional repressor for glucose repression of STA1 gene expression in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Mar;19(3):2044-50.";"1999";"EMSA, DNase protection";"10022891";"1" ;"Shimizu M, Li W, Covitz PA, Hara M, Shindo H, Mitchell AP. Genomic footprinting of the yeast zinc finger protein Rme1p and its roles in repression of the meiotic activator IME1. Nucleic Acids Res. 1998 May 15;26(10):2329-36.";"1998";"in vivo footprinting, EMSA";"9580682";"1" ;"Avram D, Leid M, Bakalinsky AT. Fzf1p of Saccharomyces cerevisiae is a positive regulator of SSU1 transcription and its first zinc finger region is required for DNA binding. Yeast. 1999 Apr;15(6):473-80.";"1999";"EMSA, site-turns-on-gene, DNase protection";"10234785";"1" ;"Idrissi FZ, Piña B. Functional divergence between the half-sites of the DNA-binding sequence for the yeast transcriptional regulator Rap1p. Biochem J. 1999 Aug 1;341 ( Pt 3):477-82.";"1999";"KMnO4 footprinting, ";"10417308";"1" ;"Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B, Gross DS, Johnston LH. The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell. 2000 Jul;11(7):2335-47.";"2000";"EMSA, site-turns-on-gene, mutational analysis";"10888672";"1" ;"Idicula AM, Blatch GL, Cooper TG, Dorrington RA. Binding and activation by the zinc cluster transcription factors of Saccharomyces cerevisiae. Redefining the UASGABA and its interaction with Uga3p. J Biol Chem. 2002 Nov 29;277(48):45977-83. Epub 2002 Sep 13.";"2002";"EMSA, mutational analysis";"12235130";"1" ;"Pic A, Lim FL, Ross SJ, Veal EA, Johnson AL, Sultan MR, West AG, Johnston LH, Sharrocks AD, Morgan BA. The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J. 2000 Jul 17;19(14):3750-61.";"2000";"EMSA, mutational analysis, expression enrichment";"10899128";"1" ;"Deckert J, Torres AM, Hwang SM, Kastaniotis AJ, Zitomer RS. The anatomy of a hypoxic operator in Saccharomyces cerevisiae. Genetics. 1998 Dec;150(4):1429-41.";"1998";"EMSA, site-turns-on-gene";"9832521";"1" ;"Mukherjee S, Berger MF, Jona G, Wang XS, Muzzey D, Snyder M, Young RA, Bulyk ML. Rapid analysis of the DNA-binding specificities of transcription factors with DNA microarrays. Nat Genet. 2004 Dec;36(12):1331-9. Epub 2004 Nov 14.";"2004";"PBM";"15543148";"1" ;"Rutherford JC, Jaron S, Ray E, Brown PO, Winge DR. A second iron-regulatory system in yeast independent of Aft1p. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14322-7.";"2001";"EMSA of related protein\'s known BS";"11734641";"1" ;"Zhao H, Butler E, Rodgers J, Spizzo T, Duesterhoeft S, Eide D. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J Biol Chem. 1998 Oct 30;273(44):28713-20.";"1998";"EMSA, DNase protection, site-turns-on-gene";"9786867";"1" ;"Baker CR, Tuch BB, Johnson AD. Extensive DNA-binding specificity divergence of a conserved transcription regulator. Proc Natl Acad Sci U S A. 2011 May 3;108(18):7493-8. Epub 2011 Apr 15.";"2011";"Sites found in coregulated genes\' promoters, and in orthologous promoters";"21498688";"1" ;"Pedruzzi I, Bürckert N, Egger P, De Virgilio C. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J. 2000 Jun 1;19(11):2569-79.";"2000";"site-turns-on-gene, one-hybrid";"10835355";"1" ;"Zhong H, Vershon AK. The yeast homeodomain protein MATalpha2 shows extended DNA binding specificity in complex with Mcm1. J Biol Chem. 1997 Mar 28;272(13):8402-9.";"1997";"Mutational analysis";"9079665";"1" ;"Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem. 2005 Mar 25;280(12):11911-9. Epub 2005 Jan 11.";"2005";"microArray Enrichment";"15647283";"1" ;"Zhu G, Davis TN. The fork head transcription factor Hcm1p participates in the regulation of SPC110, which encodes the calmodulin-binding protein in the yeast spindle pole body. Biochim Biophys Acta. 1998 Dec 10;1448(2):236-44.";"1998";"SAAB, EMSA";"9920414";"1" ;"Passmore S, Elble R, Tye BK. A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev. 1989 Jul;3(7):921-35.";"1989";"EMSA";"2673922";"1" ;"Williams RM, Primig M, Washburn BK, Winzeler EA, Bellis M, Sarrauste de Menthiere C, Davis RW, Esposito RE. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13431-6. Epub 2002 Oct 7.";"2002";"alignments of various sites under same control";"12370439";"1" ;"Sarver A, DeRisi J. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell. 2005 Oct;16(10):4781-91. Epub 2005 Jul 12.";"2005";"comparative genomics";"16014606";"1" ;"Martins LJ, Jensen LT, Simon JR, Keller GL, Winge DR. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem. 1998 Sep 11;273(37):23716-21.";"1998";"single promoter analysis, site-turns-on-gene, mutational analysis";"9726978";"1" ;"Jin Y, Zhong H, Vershon AK. The yeast a1 and alpha2 homeodomain proteins do not contribute equally to heterodimeric DNA binding. Mol Cell Biol. 1999 Jan;19(1):585-93.";"1999";"Mutational analysis";"9858582";"1" ;"Kim TS, Lee SB, Kang HS. Glucose repression of STA1 expression is mediated by the Nrg1 and Sfl1 repressors and the Srb8-11 complex. Mol Cell Biol. 2004 Sep;24(17):7695-706.";"2004";"single site mutagenesis and knockout";"15314176";"1" ;"Sirenko OI, Ni B, Needleman RB. Purification and binding properties of the Mal63p activator of Saccharomyces cerevisiae. Curr Genet. 1995 May;27(6):509-16.";"1995";"EMSA, DNase protection, methylation protection.";"7553934";"1" ;"Miller AM, MacKay VL, Nasmyth KA. Identification and comparison of two sequence elements that confer cell-type specific transcription in yeast. Nature. 1985 Apr 18-24;314(6012):598-603.";"1985";"Sites found in coregulated genes\' promoters, site-turns-gene-on";"3887184";"1" ;"Huang M, Zhou Z, Elledge SJ. The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor. Cell. 1998 Sep 4;94(5):595-605.";"1998";"EMSA";"9741624";"1" ;"Dranginis AM. Binding of yeast a1 and alpha 2 as a heterodimer to the operator DNA of a haploid-specific gene. Nature. 1990 Oct 18;347(6294):682-5.";"1990";"Methylation protection";"1977088";"1" ;"Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000 Jul 6;406(6791):90-4.";"2000";"SAAB";"10894548";"1" ;"Koering CE, Fourel G, Binet-Brasselet E, Laroche T, Klein F, Gilson E. Identification of high affinity Tbf1p-binding sites within the budding yeast genome. Nucleic Acids Res. 2000 Jul 1;28(13):2519-26.";"2000";"in vitro selection (CAST), confirmed with EMSA";"10871401";"1" ;"Lahav R, Gammie A, Tavazoie S, Rose MD. Role of transcription factor Kar4 in regulating downstream events in the Saccharomyces cerevisiae pheromone response pathway. Mol Cell Biol. 2007 Feb;27(3):818-29. Epub 2006 Nov 13.";"2007";"microArray Enrichment";"17101777";"1" ;"Roy A, Exinger F, Losson R. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol. 1990 Oct;10(10):5257-70.";"1990";"DNase protection";"2204810";"1" ;"Iraqui I, Vissers S, André B, Urrestarazu A. Transcriptional induction by aromatic amino acids in Saccharomyces cerevisiae. Mol Cell Biol. 1999 May;19(5):3360-71.";"1999";"single site mutagenesis, multiple promoter analysis (2)";"10207060";"1" ;"Siddiqui AH, Brandriss MC. The Saccharomyces cerevisiae PUT3 activator protein associates with proline-specific upstream activation sequences. Mol Cell Biol. 1989 Nov;9(11):4706-12.";"1989";"EMSA-like assay, few site analysis";"2689862";"1" ;"Ho SW, Jona G, Chen CT, Johnston M, Snyder M. Linking DNA-binding proteins to their recognition sequences by using protein microarrays. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9940-5. Epub 2006 Jun 19.";"2006";"Protein Microarrays";"16785442";"1" ;"Zaim J, Speina E, Kierzek AM. Identification of new genes regulated by the Crt1 transcription factor, an effector of the DNA damage checkpoint pathway in Saccharomyces cerevisiae. J Biol Chem. 2005 Jan 7;280(1):28-37. Epub 2004 Oct 19.";"2005";"microarray enrichment, and motif finding among 5 known binding sites";"15494396";"2" ;"Dodou E, Treisman R. The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol. 1997 Apr;17(4):1848-59.";"1997";"EMSA, in vitro selection";"9121433";"2" ;"Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol Cell Biol. 2003 Jul;23(14):4814-25.";"2003";"microarray enrichment and EMSA";"12832469";"2" ;"Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS. Genome-wide analysis of gene expression regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J Biol Chem. 2002 Aug 23;277(34):31079-88. Epub 2002 Jun 10.";"2002";"Expression enrichment by microarray, and SELEX";"12058033";"2" ;"Abdel-Sater F, Iraqui I, Urrestarazu A, André B. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics. 2004 Apr;166(4):1727-39.";"2004";"single site mutagenesis and knockout";"15126393";"2" ;"Pascual-Ahuir A, Serrano R, Proft M. The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae. Mol Cell Biol. 2001 Jan;21(1):16-25.";"2001";"EMSA, site-turns-on-gene";"11113177";"2" ;"Roth S, Kumme J, Schüller HJ. Transcriptional activators Cat8 and Sip4 discriminate between sequence variants of the carbon source-responsive promoter element in the yeast Saccharomyces cerevisiae. Curr Genet. 2004 Mar;45(3):121-8. Epub 2003 Dec 19.";"2004";"Mutated individual sites, guided by expression data";"14685767";"2" ;"Pramila T, Miles S, GuhaThakurta D, Jemiolo D, Breeden LL. Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle. Genes Dev. 2002 Dec 1;16(23):3034-45.";"2002";"microArray Enrichment";"12464633";"2" ;"Mamnun YM, Pandjaitan R, Mahé Y, Delahodde A, Kuchler K. The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo- and heterodimers in vivo. Mol Microbiol. 2002 Dec;46(5):1429-40.";"2002";"DNase footprinting";"12453227";"2" ;"Vik A, Rine J. Upc2p and Ecm22p, dual regulators of sterol biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 2001 Oct;21(19):6395-405.";"2001";"EMSA, site-turns-on-gene";"11533229";"2" ;"Chu S, Herskowitz I. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell. 1998 Apr;1(5):685-96.";"1998";"EMSA, mutational analysis, multiple site analysis";"9660952";"2" ;"Blaiseau PL, Thomas D. Multiple transcriptional activation complexes tether the yeast activator Met4 to DNA. EMBO J. 1998 Nov 2;17(21):6327-36.";"1998";"EMSA, ";"9799240";"2" ;"Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature. 2000 Jul 6;406(6791):90-4.";"2000";"SAAB, ChIP";"10894548";"2" ;"Mendizabal I, Pascual-Ahuir A, Serrano R, de Larrinoa IF. Promoter sequences regulated by the calcineurin-activated transcription factor Crz1 in the yeast ENA1 gene. Mol Genet Genomics. 2001 Jul;265(5):801-11.";"2001";"EMSA";"11523797";"2" ;"Qi Y, Rolfe A, MacIsaac KD, Gerber GK, Pokholok D, Zeitlinger J, Danford T, Dowell RD, Fraenkel E, Jaakkola TS, Young RA, Gifford DK. High-resolution computational models of genome binding events. Nat Biotechnol. 2006 Aug;24(8):963-70.";"2006";"ChIP-chip";"16900145";"2" ;"Jang YK, Wang L, Sancar GB. RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol Cell Biol. 1999 Nov;19(11):7630-8.";"1999";"EMSA, DNase protection, one-hybrid";"10523651";"2" ;"Spode I, Maiwald D, Hollenberg CP, Suckow M. ATF/CREB sites present in sub-telomeric regions of Saccharomyces cerevisiae chromosomes are part of promoters and act as UAS/URS of highly conserved COS genes. J Mol Biol. 2002 May 31;319(2):407-20.";"2002";"alignments of various sites under same control";"12051917";"2" ;"Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature. 2001 Jan 25;409(6819):533-8.";"2001";"ChIP-chip";"11206552";"2" ;"Garcia-Gimeno MA, Struhl K. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol. 2000 Jun;20(12):4340-9.";"2000";"in vitro binding assay, mutational analysis";"10825197";"2" ;"Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW 3rd, Bulyk ML. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol. 2006 Nov;24(11):1429-35. Epub 2006 Sep 24.";"2006";"PBM";"16998473";"2" ;"Acton TB, Zhong H, Vershon AK. DNA-binding specificity of Mcm1: operator mutations that alter DNA-bending and transcriptional activities by a MADS box protein. Mol Cell Biol. 1997 Apr;17(4):1881-9.";"1997";"Mutational analysis";"9121436";"2" ;"Soontorngun N, Larochelle M, Drouin S, Robert F, Turcotte B. Regulation of gluconeogenesis in Saccharomyces cerevisiae is mediated by activator and repressor functions of Rds2. Mol Cell Biol. 2007 Nov;27(22):7895-905. Epub 2007 Sep 17.";"2007";"EMSA";"17875938";"2" ;"Kim TS, Kim HY, Yoon JH, Kang HS. Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol. 2004 Nov;24(21):9542-56.";"2004";"analysis of two binding sites";"15485921";"2" ;"Noël J, Turcotte B. Zinc cluster proteins Leu3p and Uga3p recognize highly related but distinct DNA targets. J Biol Chem. 1998 Jul 10;273(28):17463-8.";"1998";"EMSA, single site mutagenesis, multiple promoter analysis (Leu3=6, UGA3=2), site-turns-gene-on";"9651335";"2" ;"Miura F, Yada T, Nakai K, Sakaki Y, Ito T. Differential display analysis of mutants for the transcription factor Pdr1p regulating multidrug resistance in the budding yeast. FEBS Lett. 2001 Sep 7;505(1):103-8.";"2001";"HT FDD PCR (transcript enrichment)";"11557050";"2" ;"Courel M, Lallet S, Camadro JM, Blaiseau PL. Direct activation of genes involved in intracellular iron use by the yeast iron-responsive transcription factor Aft2 without its paralog Aft1. Mol Cell Biol. 2005 Aug;25(15):6760-71.";"2005";"microArray Enrichment, ChIP";"16024809";"2" ;"Hallstrom TC, Moye-Rowley WS. Divergent transcriptional control of multidrug resistance genes in Saccharomyces cerevisiae. J Biol Chem. 1998 Jan 23;273(4):2098-104.";"1998";"DNase footprinting, site-turns-on-gene";"9442049";"2" ;"Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998 Dec;9(12):3273-97.";"1998";"microaray enrichment";"9843569";"3" ;"Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol. 2010 Mar 9;8(3):e1000329.";"2010";"ChIP-chip";"20231876";"4" ;"Liu X, Lee CK, Granek JA, Clarke ND, Lieb JD. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res. 2006 Dec;16(12):1517-28. Epub 2006 Oct 19.";"2006";"SELEX, EMSA, and DIP-chip";"17053089";"4" ;"Bonham AJ, Neumann T, Tirrell M, Reich NO. Tracking transcription factor complexes on DNA using total internal reflectance fluorescence protein binding microarrays. Nucleic Acids Res. 2009 Jul;37(13):e94. Epub 2009 May 31.";"2009";"TIRF-PBM";"19487241";"5" ;"Tan K, Feizi H, Luo C, Fan SH, Ravasi T, Ideker TG. A systems approach to delineate functions of paralogous transcription factors: role of the Yap family in the DNA damage response. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2934-9. Epub 2008 Feb 19.";"2008";"ChIP-chip";"18287073";"5" ;"He XJ, Fassler JS. Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces cerevisiae. Mol Microbiol. 2005 Dec;58(5):1454-67.";"2005";"microArray Enrichment, EMSA, mutational analysis";"16313629";"5" ;"Zhu J, Zhang MQ. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics. 1999 Jul-Aug;15(7-8):607-11.";"1999";"alignments of various mapped sites";"10487868";"20" ;"Chen X, Guo L, Fan Z, Jiang T. W-AlignACE: an improved Gibbs sampling algorithm based on more accurate position weight matrices learned from sequence and gene expression/ChIP-chip data. Bioinformatics. 2008 May 1;24(9):1121-8. Epub 2008 Mar 5.";"2008";"ChIP-chip";"18325926";"33" ;"Kellis M, Patterson N, Endrizzi M, Birren B, Lander ES. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature. 2003 May 15;423(6937):241-54.";"2003";"Conservation";"12748633";"41" ;"Gordan R, Murphy K, McCord RP, Zhu C, Vedenko A, Bulyk ML. Curated collection of yeast transcription factor DNA binding specificity data reveals novel structural and gene regulatory insights. Genome Biol. 2011 Dec 21;12(12):R125.";"2011";"PBM";"22189060";"42" ;"Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004 Sep 2;431(7004):99-104.";"2004";"ChIP-chip";"15343339";"65" ;"Morozov AV, Siggia ED. Connecting protein structure with predictions of regulatory sites. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7068-73. Epub 2007 Apr 16.";"2007";"ChIP-chip, structural prior";"17438293";"79" ;"Pachkov M, Erb I, Molina N, van Nimwegen E. SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Res. 2007 Jan;35(Database issue):D127-31. Epub 2006 Nov 27.";"2007";"ChIP-chip, conservation, combination of existing motifs";"17130146";"81" ;"Fordyce PM, Gerber D, Tran D, Zheng J, Li H, DeRisi JL, Quake SR. De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat Biotechnol. 2010 Sep;28(9):970-5. Epub 2010 Aug 29.";"2010";"MITOMI";"20802496";"84" ;"Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, Philippakis AA, Hu Y, De Masi F, Pacek M, Rolfs A, Murthy T, Labaer J, Bulyk ML. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res. 2009 Apr;19(4):556-66. Epub 2009 Jan 21.";"2009";"PBM";"19158363";"89" ;"Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002 Oct 25;298(5594):799-804.";"2002";"ChIP-chip";"12399584";"100" ;"Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, Gebbia M, Talukder S, Yang A, Mnaimneh S, Terterov D, Coburn D, Li Yeo A, Yeo ZX, Clarke ND, Lieb JD, Ansari AZ, Nislow C, Hughes TR. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell. 2008 Dec 26;32(6):878-87.";"2008";"PBM";"19111667";"114" ;"MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E. An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics. 2006 Mar 7;7:113.";"2006";"ChIP-chip";"16522208";"125" ;"Zhao Y, Granas D, Stormo GD. Inferring binding energies from selected binding sites. PLoS Comput Biol. 2009 Dec;5(12):e1000590. Epub 2009 Dec 4.";"2009";"PBM";"19997485";"132" ;"Reddy TE, DeLisi C, Shakhnovich BE. Binding site graphs: a new graph theoretical framework for prediction of transcription factor binding sites. PLoS Comput Biol. 2007 May;3(5):e90. Epub 2007 Apr 10.";"2006";"ChIP-chip";"17500587";"261" ;"Foat BC, Tepper RG, Bussemaker HJ. TransfactomeDB: a resource for exploring the nucleotide sequence specificity and condition-specific regulatory activity of trans-acting factors. Nucleic Acids Res. 2008 Jan;36(Database issue):D125-31. Epub 2007 Oct 18.";"2008";"ChIP-chip";"17947326";"445"